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Vasserstein Distances in Two-State Systems 
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We present formulas for the Vasserstein distance between two statistical 
mechanical states of a two-state system. For example, in a ferromagnetic 
spin-l/2 Ising model the Vasserstein distance is half the difference in the 
magnetizations. 
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1. I N T R O D U C T I O N  

In statistical mechanics it is often important to measure quantitatively the 
similarity of two different (thermodynamic) states of the same system. For 
example, water at 99~ is in some sense more similar to water at 97~ than 
to steam at 101~ This need is often satisfied by the so-called Vasserstein 
(or Kantorovich) distance, (1'2) which is, for example, precisely the correct 
distance for use in the important Dobrushin-Shlosman phase uniqueness 
theorem. (3-5/In general there is no formula for the Vasserstein distance and 
it must be computed using intricate linear programming techniques. (5) In 
this paper we produce simple formulas, restricted to two-state systems, 
relating the Vasserstein distance to the average magnetization (or staggered 
magnetization). 

2. DEF IN IT IONS 

Consider a lattice L and a finite subset of it, the "lattice cell" V. At 
each site l in L a variable (or spin) takes on one of only two possible 
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values, which we call _+ 1 (up or down). One configuration of the lattice is 
chosen as the reference configuration. (The most convenient reference con- 
figuration is often, but not always, a minimum-energy configuration.) Any 
configuration of the lattice cell (denoted by i, j, or k) is then specified by 
the set of spins in V which are overturned from the reference configuration. 
Thus, we can perform set operations on configurations (e.g., i• j). The 
indicator function I(l) flags the status of lattice site l in configuration 
i : I ( / )=  +1 if the spin at site l is overturned (i.e., if lei), I ( l ) = - 1  
otherwise. The magnetization (or, more generally, the staggered magnetiza- 
tion) of cell configuration i is 

re( i)= ~ I(l) (1) 
I E V  

The Hamming distance d(i,j) between two configurations in V is the 
number of sites in V at which the two configurations differ, so 

1 
d(i,  j )  = -~ ,~-v II(/) - J ( / ) l  (2) 

This paper will not consider distances between states which differ in 
temperature, magnetic field, coupling constants, etc. Instead, the two states 
will differ only by the configuration of boundary spins. (Boundary spins are 
those which interact with spins in V, but which are not themselves in V. 
We denote boundary configurations by x or y, and specify them in the 
usual way by listing the boundary spins overturned from the reference 
configuration.) The energy of cell configuration i subject to boundary x is 
Ex(i), and its probability is 

e x p  [ - -  Ex(i)/kB T] 
px(i) - (3) 

Z(x ;  T) 

where Z(x; T) is the partition function which normalizes the probabilities. 
The average magnetization (or staggered magnetization) of the cell is 

Mx = ~ m(i) px(i) (4) 
i 

where the sum runs over all configurations of V. The Vasserstein distance 
between two states specified by the boundaries x and y is 

~x,y=min {~ w(i, j) d(i, J)} (5) 
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where the minimization is performed over all joint probability distributions 
w(i, j) that satisfy 

w(i, j) = px(i); ~ w(i, j) = py(j); w(i, j) >10 (6) 
j i 

3. G E N E R A L  R E S U L T S  

We first show that for any two-state system the Vasserstein distance 
between two states is bounded below by half the difference in their 
magnetizations. We then show that under certain circumstances it is boun- 
ded above by the same amount. 

k e m m a  1 (Lower bound). The Vasserstein distance between the 
state with boundary x and the state with boundary y satisfies 

~x,y~ �89 (7) 

ProoL First note that 

1 >1 ~z 1 
d(i,j)=-~ ~ [I(I)-J(l)[~.. 2 [I(l)-J(l)] =-~lm(i)-m(j)] (8) 

l c V  l 

Now, if w(i, j) is the probability distribution which satisfies (6) and mini- 
mizes (5), then 

~x,y = ~ w(i, j) d(i, j) 
i , j  

1 
>~ ~ ~ w(i, j) [re(i)- m(j)[ 

>~ 21 ~ w(i, j) m(i) - ~i,j w(i, j) m(j) 

Using relations (6), the last expression becomes 

m(j) 1 1 ~i Px(i) m( i )_~py( j  ) =.~[Mx_My [ 2 . j 

(9) 

I (lO) 

The upper bound follows from the following remarkable theorem due 
to Holley, (6) which can be proven either using the theory of Markov 
chains~6 s) or through direct combinatoric arguments. (9'1~ (In fact, the con- 
clusions of this theorem follow (11) from the weaker hypothesis that the dis- 
tribution py is "less than" the distribution Px in the precise sense described 
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by Liggett. ~7) This version of the theorem is not, however, needed for this 
paper.) 

Holley's Theorem. Suppose that px(i) and py(j) are probability 
distributions over the configurations of a two-state system and that they 
satisfy 

px(i •j) py( i~j )  >~ px(i) py(j) (11) 

for all i and j. Then there exists a joint probability distribution wo(i, j) 
which satisfies the requirements (6) and for which 

wo(i, j )  = 0 whenever j qt i (12) 

L e m m a  

Proof. 

1 1 
d(i, j )  = ~ E [ I ( t )  - s ( t ) ]  = ~ I r a ( i ) -  m(j)] 

l E V  

In addition, because of (5) and (12), 

2 (Upper bound). If px(i) and py(j) satisfy (11), then 

Nx, y ~ �89 - My) (13) 

If j ___ i, then 

(14) 

~x, y <-G ~ Wo(i, j) d(i, j) 
i , j  

= ~ wo(i, j) d(i, j) 
j ~ i  

= ~ ~ wo(i, j)[m(i) -- m(j)-] 
j ~ i  

2 i j  i , j  

= -~ px(i) re(i) -- ~ py(j) re(j) 
J 

1 
=-~ ( M x -  My) (15) 

[Note that Mx >~ My by virtue of Holley's inequality, (11) of ref. 6 ] | 

Thus, one need only verify inequality (11) to produce a simple formula 
for the Vasserstein distance. The use of (3) in (11) converts it from a condi- 
tion on probabilities to a condition on energies, as follows. 
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Theorem. If the energies of a two-state system satisfy 

Ex( i w k)  - Ex( i) <~ Ey( j  w k)  - Ey( j  ) (16) 

for all configurations i, j, and k with j_~ i and k c~ i = ~ ,  then 

Jlx, y = � 8 9  My)  (17) 

Proof. Direct use of (3) in (11) results in 

Ex( i w j )  - Ex( i ) <~ Ey( j )  - E , (  i c~ j )  ( 1 S) 

for all configurations i and j. But this is the same as (16), where k 
represents those spins which are in j but not in i, and where j in (16) is 
the same as i c~ j in (18). 

Remark.  Equation (16) is simply interpreted. The right-hand side is 
the energy cost of overturning the spins in k given that the spins in j and 
in y are already overturned. The left-hand side is again the energy cost of 
overturning the spins in k, but now given that the spins in i and in x are 
already overturned. 

4. F E R R O M A G N E T I C  M O D E L S  

In this section the reference configuration is the one in which all spins 
point down, so the magnetizations are direct rather than staggered. From 
the remark interpreting Eq.(16), it is clear that (16) holds for 
ferromagnetic models whenever x~_ y: It simply says, "the more spins 
that are up, the easier it is to overturn down spins." We have proven the 
following result. 

Corollary 1. For ferromagnetic spin-l/2 Ising models and with 
X _ y, 

~x.y = � 8 9  (19) 

where M x is the average (direct) magnetization of the cell with boundary x. 

Note the generality of this result: it accomodates any lattice, non- 
uniform couplings and fields, interactions of any finite range, and multispin 
interactions. It assumes only that (i)all interactions are ferromagnetic and 
that (ii) there are only two states per lattice site. 

5. A N T I F E R R O M A G N E T I C  M O D E L S  

In this section we consider a lattice cell consisting of two sets of spins, 
A and B, such that interactions between sets are antiferromagnetic, while 
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interactions within each set are ferromagnetic. An example is the 
nearest-neighbor antiferromagnetic spin-l/2 Ising model on a bipartite 
lattice. The reference configuration is one in which all the spins of A 
point down, while all the spins of B point up, so the magnetizations are 
staggered rather than direct. Once again, it is clear that the inequality 
holds whenever x _  y, so we have the following result. 

Corollary 2. For the models described above, and with x ~ y ,  

~x,y = �89 - My)  (20) 

where Mx is the average staggered magnetization of the cell with boundary x. 

Because the hard-square model is the limit of an Ising antiferromagnet 
as the repulsive interactions become very strong, this result applies to the 
hard-square model and in fact constitutes a proof of Radulescu and 
Styer's (5) conjecture C. Preliminary computer explorations using this result 
and the Dobrushin-Shlosman theorem (3) confirm the value of the formula: 
Computation of Vasserstein distances through formula (20) is three orders 
of magnitude faster than computation through a direct linear programming 
minimization of (5). This raises the possibility that the Dobrushin- 
Shlosman theorem may be able to locate phase transitions practically as 
well as rigorously. 
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